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Abstract:

Finding adequate stopping criteria for polynomial root finders is not always easy. To
aggressive stopping criteria and you will never converge to an acceptable root or too lax
and you find roots with a lesser degree of accuracy than possible by the actual limitation
of the machine’s precision. Stopping criteria are based on the round-off errors when
evaluating a polynomial at a given real or complex point x.

Change log

February 12, 2023. Updated with more content throughout the document. Added and
expanded the stopping criteria from Grant-Hitchins, Igarashi, Garwick & Ward, and JL
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Introduction:

When locating the zeros of a polynomial, it is usually difficult to know just when to
terminate the iteration process. It is desirable to terminate the process when the zero is
known to be within the round-off accuracy. Various ad hoc stopping criteria have been
used; however, such criteria do not take into account particular properties of the
polynomial being evaluated. Such properties might include the condition of the
polynomial, multiple zeros, or clusters of zeros. In this paper, a stopping criterion is
presented which requires that the value of the polynomial be smaller than a calculated
bound for the round-off error.

Before we can jump into a discussion of stopping criteria we first need to see how we
evaluate a polynomial at some point z (z can be a real or complex number) and then
continue our discussion by first looking at a simple upper bound, following by more
advance upper bound for the rounding errors in evaluating a polynomial at some complex
or real point.

Evaluation of Polynomials:

To evaluate a polynomial P at z:
P(z)=a,z"+a, z"" +..+az+a,
We generally use Horner recurrence given by the recurrence:

bn :al‘l
b,=b,_z+a, k=n-1..,0

The last term of this recurrence by is now the value of P(z).

Therefore, this evaluation of P(z) requires n multiplications and additions for a total of 2n
operations. The above mention recurrence works well for polynomials with real
coefficients evaluated at a real point x, as well as for polynomials with complex
coefficients evaluated at a complex point Z=x-+iy in which case multiplication and
addition are replaced with the complex multiplication and addition for complex
arithmetic given by:

Complex multiplication: (atib)(ctid) = (ac — bd) + i(ad+bc)
Complex addition: (atib)+(c+id) = ac + ibd

Since a Complex multiplication requires 4 ‘real” multiplications and 2 additions the total
number of operations involving is 4n+2n or 6n ‘real’ operations for polynomials with
complex coefficients evaluated at a complex point.
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In the case of a polynomial P with real coefficients evaluated at a complex point Z we in
general are using Horner recurrence but in a special version using only real arithmetic:

Z=x+iy
p=—2x

g=x"+y

b,=a,

b, =a,,—pb,

b =a,—-pb.—qgb.,, k=n-2,.]
by, =a, +xb —gb,

P(Z)=b, +iyb,

It, therefore, requires a 4n operation instead of 2n for the real case to evaluate a
polynomial with real coefficients and a complex point Z.

Polynomial Real coefficient Complex coefficients \
The Number of operations:

Real point 2n 4n

Complex point 4n 6n

Algorithm Horner with real coefficients at a real point

// Evaluate a polynomial with real coefficients a[] at a real point r

// and return the result in fz

// the function returns the absolute magnitude of the evaluation

double horner(const int n, const double a[], const double r, double *fz)

{
double fval;

fval = a[e];
for (int i = 1; i <= n; i++)
fval = fval * r + a[i];

*fz = fval;
return abs(fval);
}

Algorithm Horner with real coefficients at a complex point

// Evaluate a polynomial with real coefficients a[] at a complex point z
// and return the result in fz
// the function returns the absolute magnitude of the evaluation
double horner( const int n, const double a[], const complex<double> z,
complex<double> *fz )

{

int i;
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double p, g, r, s, t;

-2.0 * z.real();
norm( z );

0; r=2al @ 1];
i=1; 1< n; i++ )

-+ 0 QT
o
Sononon

~ 3 N A

ali]l-p*r-q*s;
r;
t;

*fz = complex<double>( a[ n ] + z.real() * r - q * s, z.imag() * r );

return abs( *fz );

}

Algorithm Horner with complex coefficients at a complex point

// Evaluate a polynomial with complex coefficients a[] at a complex point z

// and return the result in fz

// the function returns the absolute magnitude of the evaluation

double horner( const int n, const complex<double> a[], const complex<double> z,
complex<double> *fz )

{

complex<double> fval;

fval = a[ @ ];
for( int i = 1; i <= n; i++ )
fval = fval * z + a[ 1 ];

*fz = fval;
return abs( fval );
}

Error in arithmetic operations:

J.H.Wilkinson in “Rounding errors in algebraic processes” [3] has shown that the errors
in performing algebraic operations are bound by:

1 :
€< 5 L' Bis the base, and t is the precision (Assuming round to nearest)
For the Intel microprocessor series and the IEE754 standard for floating point operations

B= 2 and t=53 for 64bit floating point arithmetic or 2>

A simple upper bound:

A simple upper bound can then be obtained using the above information for a polynomial
with degree n.
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Polynomial

The number of operations: Real coefficient Complex coefficients

Real point |ao| -2n-27% |ao| -4n-27%

Complex point |ao| -4n-27%3 |ao| -6n-2%
A better upper bound.

In this category, we have among others Adams [1] and Grant & Hitchins [2] stopping
criteria for polynomials.

Polynomial root finders usually can handle polynomials with both real and complex
coefficients evaluated at a real or complex number. In principle, we have 3 different
scenarios (real coefficients at a real point, real coefficients at a complex point, and
complex coefficients at a complex point) that we must deal with to calculate a root to the
limitations of the machine precision. Since the bound of the round-off errors are different
for these 3 scenarios we need to evaluate them individually.

Case 1: Stopping criteria
Polynomial with real coefficients a, evaluated at a real point x, using Horner’s method:

bn =4a,

b,=b,_x+a, k=n-1..0

An error bound can be computed using a similar recurrence as follows, see Kahan[7]:

e, = ek_l‘x‘ + ‘bk‘ k=n-1,..,0

e=(4e,—2|b, )¢ wheree :%ﬁ“

Algorithm Kahan Stopping Criteria

// Calculate the upper bound for the rounding errors performed in a
// polynomial with real coefficient a[] at a real point z. Kahan
//

double upperbound(const int n, const double a[], const double r)

int i;
double t, e;
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t = a[@]; e = abs(t)*(0.5);
for (i = 1; i<n; i++)

{

t = t*r + a[i];

e = abs(r)*e + abs(t);

}
e = (2 * e - abs(t))*pow((double) DBL_RADIX, -DBL_MANT_DIG + 1);
return e;
}

Case 2: Adams Stopping Criteria

Using Horner's method, a polynomial with real coefficients is evaluated at a complex
point z.

Z=x+iy
p=-2x
g=x"+y’

bi’l = a}’l
b,,=a,,—pb,

b, =a,-pb.,, —qb.,, k=n-2,.]
b, =a, +xb, —qb,
P(Z)=b, +iyb,

Adams [1] has shown that an error bound can be computed using the following
recurrence:

e, = ek_l‘Z‘ + ‘bk‘ k=n-1,...0

e =(4.5¢,~3.5(b,|+[5,|Z]) +|x[p))e where & = % =

Algorithm Adams Stopping Criteria

// Calculate an upper bound for the rounding errors performed in a
// polynomial with real coefficient a[] at a complex point z. ( Adam's test )
//
double upperbound( const int n, const double a[], const complex<double> z )
{
int i;
double p, q, r, s, t, u, e;

p=-2.0*z.real();
g = norm( z );
u=sqrt( q );
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s =0.0; r=al[ @ ]; e=Ffabs(r ) * ( 3.5/ 4.5);
for( i =1; i< n; i++ )

{

t=2a[i]-p*r-q*s;

S = r;

@ = 185

e =u*e+ fabs( t );

}
t al n]+ z.real() *r - g * s;

e
e

u*e+ fabs( t );

(4.5 *e - 3.5 *% ( fabs( t ) + fabs( r ) *u ) +

fabs( z.real() ) * fabs( r )) * 0.5 * pow( (double) DBL_RADIX, -
DBL_MANT DIG+1);

return e;

}

Case 3: Grant & Hitchins stopping criteria

Using Horner's method, a polynomial with complex coefficients zn is evaluated at a
complex point z. This gets a little bit more complicated. Grant and Hitchins [2] derive an
upper error bound for the errors in evaluating the polynomial as follows

P(Z)=(a, +ib,)z" +(a,  +ib, )z"" +..+(a, +ib)z +(a, +b,)

Using Horner’s method and keeping track of the real component cx and the imaginary
component di of the coefficient separately we get:

c,=a,, d =b

n n
¢, =c,,x—yd, ,+a, k=n-1,..,0

d =d x+yc,,+b k=n-1..0
Using these values an error bound can now be calculated using the recurrence:

gnzl’ hn:1

)+ ‘y‘(hkﬂ + ‘dk+1‘) + ‘ak‘+ 2‘%‘ k=n-1,..,0
)+ ‘x‘(hkﬂ + ‘dk+1 D + ‘bk ‘ + Z‘dk‘

8r = M(g/m + ‘Ck+1

h, = ‘y‘(g/m + ‘ck+1

Now the error is (go+iho)e, where e= % B!, Now since the recurrence in itself introduce

error [2] safeguard the calculation by adding the upper bound for the rounding errors in

the recurrence, so we have the bound for evaluating a complex polynomial in a complex
point:

e=(g, +ih)e(l+&)" whereg = %,BH

12 February 2023 Page 8



Stopping criteria for Polynomial root finders

Other methods in this category are Igarshi’s, Garwick’s, and Ward’s. The nice parts of
these stopping criteria are that they don’t discriminate whether the polynomial is with
real or complex coefficients at a real or complex point as long as the calculation is done
with proper respect for the type of coefficient and the type of evaluation point.

Algorithm Grant & Hitchins Stopping Criteria

// Calculate an upper bound for the rounding errors performed in a

// polynomial with complex coefficient a[] at a complex point z. ( Grant &
Hitchins test )

//

double upperbound(const int n, const complex<double> a[], complex<double> z )
int i;
double nc, oc, nd, od, ng, og, nh, oh, t, u, v, w, e;
double tol = ©.5* pow((double) DBL_RADIX, -DBL_MANT_DIG + 1);

oc = a[@].real();
od = a[@].imag();
og = oh = 1.0;

t = fabs(z.real()); u = fabs(z.imag());
for (i = 1; 1 <= n; i++)

{
nc = z.real() * oc - z.imag() * od + a[i].real();
nd = z.imag() * oc + z.real() * od + a[i].imag();
v = og + fabs(oc); w = oh + fabs(od);
ng =t *v+u*w+ fabs(a[i].real()) + 2.0 * fabs(nc);
nh =u * v+t *w+ fabs(a[i].imag()) + 2.0 * fabs(nd);
og = ng; oh = nh;
oc = nc; od = nd;
}
e = abs(complex<double>(ng,nh) ) * pow(1l + tol, 5 * n) * tol;
return e;
}
Igarashi’s

Igarashi’s suggested back in 1984 a new stopping criterion for finding the roots of the
polynomial P(z).

P(z)=a,z"+a, z"" +..+az+a,
Igarashi’s suggested a stopping criterion after the i’th iteration when:
|P(z;) — B(z;)| = min(|P(z,)],|B(z)I)
Where B(z) = zP'(z) — C(z) and C(z) = zP'(z) — P(2). Of course, they have to be

evaluated before the subtraction and you get the following two evaluations calculated
using the Horner methods.
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zP'(z) =na,z"+ (n—1a,,_z" 1+ +a,z
C(z) = (n—Dayz"+ (n—2)ap_1z" 1+ -+ ayz? — a,

Initially, when you are far from the root the |P(z;) — B(z;)| will be smaller than
min(|P(z;)|, |B(z;)|), however as you approach the root both P(z;) and B(z;) will go
towards zero but then |P(z;) — B(z;)| will be dominated by the round-off errors and
become larger than min(|P(z;)|, |B(z;)|) providing a suitable stopping criteria for the
root search.

Igarashi suggests that the search will terminate if one of the 3 conditions arises:
a) If P(z;) or B(z;) = 0.0
b) If P(Zi)B(Zl') <0
) If P(z)B(z;) > 0 and (2|P(z)| < |B(zy)| or 2|B(z;)| < |P(z))] )

Algorithm Igarashi with real coefficients at a real point

// Igarashi stopping criteria for Polynomial with real coefficients
// at a real point r
// n is the degree of the polynomial
// Notice that a[@] is an, a[l] is an-1 and a[n]=a0
//
bool Igarashi(const int n, const double a[], const double r)
{
double *zP = new double[n+1];
double *C = new double[n+1];
double px, zpx, cx, bx;

for (int i = @; i <= n; i++)

zP[i] = (n - i) * a[i];
C[i] = (n - 1 - 1) * a[i];

horner(n, a, r, &px);

horner(n, zP, r, &zpx);

horner(n, C, r, &cx);

bx = zpx - cx;

delete [] zP, C;

if (px == 0.0 || bx == 0.0) return true;

if (px*bx < @) return true;

if (2 * fabs(px) <= fabs(bx) || 2 * fabs(bx) <= fabs(px)) return true;
return false;

}

Algorithm Igarashi with real coefficients at a complex point

// Igarashi stopping criteria for Polynomial with real coefficients
// at a complex point z

// n is the degree of the polynomial

// Notice that a[@] is an, a[l] is an-1 and a[n]=a®@

//
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bool Igarashi(const int n, const double a[], const complex<double> z)
{
double *zP = new double [n + 1];
double *C = new double [n + 1];
complex<double> px, zpx, cx, bx;

for (int i = @; i <= n; i++)
{
zP[i] = (double)(n - i) * a[i];
C[i] = (double)(n - i - 1) * a[i];
}
horner(n, a, z, &px);
horner(n, zP, z, &zpx);
horner(n, C, z, &cx);
bx = zpx - cx;
delete[] zP, C;
if (px == 0.0 || bx == @.0) return true;
if (px.real()*bx.real() < @ || px.imag() * bx.imag() < @) return true;
if (2 * abs(px) <= abs(bx) || 2 * abs(bx) <= abs(px)) return true; return

}

false;

Algorithm Igarashi with complex coefficients at a complex point

// Igarashi stopping criteria for Polynomial with complex coefficients
// at a complex point z

// n is the degree of the polynomial

// Notice that a[@] is an, a[l] is an-1 and a[n]=a®@

//
bool Igarashi(const int n, const complex<double> a[], const complex<double> z )
{
complex<double> *zP = new complex<double> [n + 1];
complex<double> *C = new complex<double> [n + 1];
complex<double> px, zpx, cx, bx;
for (int i = @; i <= n; i++)
{
zP[i] = (double)(n - i) * a[i];
C[i] = (double)(n - i - 1) * a[i];
horner(n, a, z, &px);
horner(n, zP, z, &zpx);
horner(n, C, z, &cx);
bx = zpx - cx;
delete[] zP, C;
if (px == 0.0 || bx == @.0) return true;
if (px.real()*bx.real() < @ || px.imag() * bx.imag() < @ ) return true;
if (2 * abs(px) <= abs(bx) || 2 * abs(bx) <= abs(px)) return true;
return false;
}
Garwick’s & Ward’s

Garwick (see JLN[5]) introduces this very simple stopping criterion that states that when
the increment from two iterative steps e; > e;_1, where e; = |z; — z;_4| then the root
z;_ 1s found. When convergence has first started then the rate of convergence does not
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decrease until a root has been found. Ward (see JLN[5]) improve on the initial problem
with the Garwick precondition issue and states the following stopping criterion:

z;_q,isarootif e; > e;_;,wheree; = |z; — z;_4]|
JLN [5] replace it to:
zi_jisarootif e; > e;_,where e; = |z; — z;_4]|

after numerical results show Ward originally failed to stop under certain conditions.

And the following preconditions hold:
(1) e <1077if |z_4| <107*

e.
(2) Iz-l | < 1073if|z;_4| = 107*
-1

Algorithm Garwick & Ward with real coefficients at a real point

// Garwick stopping criteria.

// r, rl & r2 is the 3 latest root estimations.

// Convergence rate only decrease due to rounding errors then

// we continue until the new r has a larger step size than the previous
// rl (due to round-off errors)

// Return true if stopping criteria have been reached otherwise false

bool Garwick(const double r, const double ril, const double r2 )

{
double el, e2;

el = fabs(r - rl); // Newest stepsize
e2 = fabs(rl - r2); // Previous stepsize
if( fabs(rl) < 1E-4 && el <= 1E-7 ||
fabs( rl ) >= 1E-4 && el/fabs(rl)<=1E-3)
if (el >= e2) return true;
return false;

}

Algorithm Garwick & Ward with complex coefficients at a complex point

// Garwick stopping criteria.

// z, z1 & z2 is the 3 latest root estimations.

// Convergence rate only decrease due to rounding errors then

// we continue until the new z has a larger step size than the previous
// z1 (due to round-off errors)

// Return true if stopping criteria have been reached otherwise false

bool Garwick(const complex<double> z, const complex<double> z1, const
complex<double> z2)

{

double el, e2;

el
e2

abs(z - z1); // Newest stepsize
abs(zl - z2); // Previous stepsize
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if (abs(zl) < 1E-4 && el <= 1E-7 ||
abs(z1) >= 1E-4 &% el / abs(zl) <= 1E-3 )
if (el >= e2) return true;
return false;

}

An even better upper bound

JL Nikolajsen [5] write an excellent paper and suggested a new stopping criterion for
iterative root finding. His suggestion eliminates unnecessary function evaluations and
also immediately stop the iterations when no further improvement to the roots is possible.
JLN outlines 4 possible stopping criteria capable of also handling the ill-conditioned root.
The method works equally well for both real and complex roots. Instead of repeating the
JLN finding I will just summarize the 4 different stopping criteria

JLN Sopping criterion 1

2

S.
. . l
ziisarootif — = s,
Si-1
iy m
Precondition: s;_y = —
m

S; is the number of matching leading bits (MLBs) of the two successive iterates zi.1 and z;,
sm 1s the length of the IEEE 754 floating point double precision e.g. Sm=53 bits, and qm is
the convergence order of the iterative method used. E.g. Newton is 2, Halley is 3 and
Laguerre is also 3, etc.

JLN Stopping criterion 2

2
. o Si
Zizp lsarootif — > 544

Si—1
ey Sm Sm
Preconditions: s;_y =2 — and s; — S;_1 = —
m m

This stopping criterion is used when the criterion 1 convergence rate is not quite fast
enough to trigger the stopping criterion 1.

JLN Stopping criterion 3
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Stopping criterion 3 is used to catch stop after a single iteration if needed and comes in 2
sub-criteria

z;isarootif
Sm
1:zy # 0 and s, 27

2:zo=0and s; = s

z;isarootif
Sm
1:5; — 51 2 > or

Sm .
2:51 — Sj_q1 = e and Sj;1 — S; < S; — Sj_qy wheni = 2

JNL Stopping criterion 4

The last stopping criterion is.
Ziyq Isaroot ifs;y, < Ss;4q With the precondition:
Si_1=b,si=band b =8

As already mention I encourage readers to study the JLN method [5] in detail and JLN
more elaborated explanation and details of the method.

Other methods:

[4] Provide a comprehensive list of other methods to consider and is a good reference for
what has been done in this field over the last many years.

Interval arithmetic is another obvious choice. The benefit is that if we use interval
arithmetic in our evaluation we immediately have a bound for the error in our evaluation.
The stopping criteria will be if the polynomial evaluation using interval arithmetic
contains an interval containing zero.
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